International Energy Agency

Energy Conservation Through
Energy Storage Programme
Contents

Preface I
Introduction II
Chairman’s Report IV
Ongoing Activities VI
Further Activities 30
Executive Committee Members 33
ENERGY CONSERVATION THROUGH ENERGY STORAGE
IMPLEMENTING AGREEMENT

The Implementing Agreement (IA) started in 1978. Its present term ends by February 2016. At present Contracting Parties from the following countries have signed the Implementing Agreement: Belgium, Canada, China, Denmark, Finland, France, Germany, Italy, Japan, Korea, The Netherlands, Norway, Slovenia, Sweden, Turkey, USA and the Institute of Heat Engineering (ITC) of the University of Technology, Warsaw, Poland and University of Lleida from Spain as sponsors. The Executive Committee is working intensively to attract more countries to not only join the activities but also sign the Implementing Agreement. Ireland, New Zealand, Australia, India and Chile are interested. Experts from several countries do already participate in the Annex work as observers.

According to the new Strategy Plan (2011 – 2015) approved in 2010 the strategic objectives for the IA remain as follows:

Technology: Maintain and develop international technical R&D collaborations that further the environmental and market objectives.

Environment: Quantify and publicise the environmental and energy efficiency benefits of integrated energy storage systems.

Market and Deployment: Develop and deliver information to support appropriate market deployment and provide effective collaboration and information to stakeholders.

The Executive Committee coordinates and leads the collaborative work in the Annexes and the Committee also takes an active part in various information activities such as workshops, seminars and conferences.
We need energy - electrical or thermal - but in most cases not where or when it is available. Enjoying the sound of music while you are jogging, you cannot stand beside the socket: electrical energy storages - batteries - make you mobile. The energy you need is stored for a short while and over the distance you like to run. Having a cold beer on a summers evening was possible even before cooling machines were invented. At that time people were cutting ice from the lakes in winter, transported the ice to the brewery and stored it in deep cellars. The cold was stored or the winter to the summer: An example for long term thermal energy storage and the utilization of renewable energies. In cold climates surplus solar heat from summer can be used in winter for heating of buildings by seasonal storage. Waste heat from industrial processes, steam from solar thermal power plants or electricity from photovoltaic panels are examples for energy sources, which can not be used more extensively without energy storages.

A huge potential of energy sources substituting fossil fuels can only be exploited by energy storage systems, utilizing renewables like solar thermal, PV and wind energy. Thermal and electrical energy storage systems enable greater and more efficient use of these fluctuating energy sources by matching the energy supply with the demand. This can finally lead to a substantial energy conservation and reduction of CO$_2$ emissions. The growing peak demand of today’s energy consumption, essentially caused by electrical air conditioning, leads more often to blackouts all over the world. Such a problem - the shifting of a peak demand for only a few hours or minutes - can be solved by cold storage technologies. In this context
energy storages can be the best solution not only from the technical point of view, but also for economical reasons. The energy to be stored can be either electrical or thermal. Both energies require completely different storage technologies. However, in the actual application both technologies can meet: The peak demand of electricity for example is in most cases caused by air conditioning, which is a thermal task. The cooling demand can be covered by a cold store (ice or chilled water) which is charged at off-peak hours by electric chillers. Energy storages can be described by their storage capacity (stored energy per mass or volume), power (energy output per time), storage period (how long the energy should be stored) and size. All these parameters can vary over a huge scale: From latent heat storage to prevent laptops from getting too hot (stored energy in the range of a few Wh) to the heat and cold thermal underground storage system underneath the German Reichstag in Berlin (stored energy in the range of some 2 GWh).

Many governments have committed themselves to reduce CO₂ emissions into the atmosphere. They have decided to strengthen their national efforts and the international cooperation for research and development (R&D) in the International Energy Agency (IEA) and to increase the deployment of energy conservation technologies and utilization of renewable energy sources. So far in most industrialized countries, renewable energy sources contribute only marginally to satisfy energy demand. Energy storage technologies can help to solve problems caused by the intermittent energy supply of these sources. There is a huge potential for the application of energy storage systems. The fact that energy storage systems are not as widely used as they could is due to several reasons. In particular because most new storage systems are not yet economically competitive with fossil fuels and their long term reliability and performance is not yet proven. There are still some regulatory and market barriers which have to be overcome. Therefore further attempts are being made to resolve these issues. The IEA Implementing Agreement on Energy Conservation through Energy Storage provides the platform for international cooperation (www.iea.org) in R&D. After almost three decades of R&D the emphasis of the cooperative R&D efforts has shifted towards the implementation and optimal integration of new storage technologies for an efficient use of energy and renewable energy sources. In the future more application oriented topics like thermal energy storage for cooling and industrial processes or mobile thermal storage systems for the utilization of waste heat will be investigated. The issue of implementation and deployment of new energy storage technologies has become a higher priority as the R&D phase is concluding.
The following disadvantageous developments of the year 2013 indicate that world decision makers do not yet understand the risks of climate change:

- Fracking shale gas deposits in USA
- Summer heat waves setting electric demand records in the UK
- Severe air pollution seen in major cities of China

Efforts to alleviate the climate change through especially more solar and wind capacities bring new challenges. There are problems with integrating renewable energies into the grid and distributed generations in countries such as Germany.

Energy storage is the key element of low carbon energy technologies that possess integrated renewable energies. Thermal and electrical energy storage systems can be used separately or in complementary to each other to make systems more energy efficient and cost effective. Two important facts have to be taken into consideration in structuring future energy systems: Total cost of ownership of thermal storages in USD/kW is less than in the order of 4-10 times compared to different electrical storages and the demand for heating and cooling in final energy consumption in most countries is more than 40%. These numbers show that 100% “electrification” cannot be the sole answer to the energy problem of today.

2013 has been another very active and productive year for ECES. We are addressing different aspects of current challenges though our Annexes and collaborations with IEA and/or non-IEA bodies.

One of the highlights of 2013 was our contribution to IEA Energy Storage Technology Roadmap. This has been a motivating and eye-opening experience for us. We tried to coordinate with IEA’s energy storage team in this mission. I hereby wish to thank IEA team for their cooperation and all our delegates and experts who have contributed to the preparation of this document. Our current experiences show that energy storage as a whole is still misunderstood. More data and modeling tools are needed to indicate the role of energy storage technologies clearer in the complete energy picture.
We continue our co-operation with other IEA bodies. Prof. Luisa Cabeza from the University of Lleida has represented us in the IEA EUWP Energy Efficiency in Industry Workshop in Brussels, 20 March 2013 and I gave a presentation at IEA Future Buildings Forum Workshop on "Transforming the Built Environment by 2035" in Soesterberg, 11-12 April 2013.

Reaching out to new members and re-activating some existing (yet inactive) members continued in 2013. The Netherlands has completed its formal procedures and signed the Implementing Agreement. We had observers from both Ireland and Chile showing interest in joining us.

The preparations for our next tri-annual conference are under way. Greenstock - 13th International Conference on Energy Storage will be organized by China in Beijing in May 2015.

I would like to thank our delegate Josefine Wejerstrand from Sweden who will be leaving our group. I hereby give a very warm welcome to our new delegates who have joined us in 2013: Lex Bosselaar, delegate and Teun Bokhoven, alternate delegate from Netherlands, Paul Sra, our delegate from Canada, Jennica Broman delegate from Sweden, Hyun-Choon Cho delegate from Korea and Yuriko Terao alternate delegate from Japan. IF Technology from Netherlands has withdrawn from being our sponsor member, when Netherlands joined us as a full member. I would like to thank IF Technology for their contributions to ECES over the years.

Last but not least, I wish to thank all the members of our Executive Committee, our Operating Agents, the experts of Annexes, our secretary Hunay Evliya, our webmanager Yeliz Konuklu, and the IEA desk officer John Dulac each, for their excellent contributions to the collaborative work and success of ECES.

Halime Paksoy, Chairman ECES
In 2013 five Annexes were performed by the “Energy Conservation through Energy Storage” Implementing Agreement.

<table>
<thead>
<tr>
<th>Annex-No.</th>
<th>Title</th>
<th>Time Schedule</th>
<th>Operating Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Thermal Response Test</td>
<td>2007-2010</td>
<td>ZAE Bayern/Germany</td>
</tr>
<tr>
<td>23</td>
<td>Applying Energy Storage in Buildings of the Future</td>
<td>2009-2013</td>
<td>Concordia University/Canada</td>
</tr>
<tr>
<td>25</td>
<td>Surplus Heat Management using Advanced Thermal Energy Storage Technology</td>
<td>2010-2013</td>
<td>University of Leida / Spain</td>
</tr>
<tr>
<td>26</td>
<td>Electric Energy Storage: Future Energy Storage Demand</td>
<td>2010-2013</td>
<td>Fraunhofer Umsicht/ Germany</td>
</tr>
<tr>
<td>29</td>
<td>Material Research and Development for Improved TES Systems</td>
<td>2013-2015</td>
<td>ZAE Bayern/Germany</td>
</tr>
</tbody>
</table>
Overview of scope
Sustainable buildings need to be energy efficient well beyond current levels of energy use. They need to take advantage of renewable and waste energy to approach ultra-low energy buildings. Such buildings need to apply thermal and electrical energy storage techniques customized for smaller loads, more distributed electrical sources and community based thermal sources.

The general objective of this Annex was to ensure that energy storage techniques are properly applied in ultra-low energy buildings and communities. Applications of these designs are foreseen in recent years where total carbon dioxide reduction is required. Proper application of energy storage is expected to increase the likelihood of sustainable building technologies and may well be necessary for the wide scale adoption of sustainable buildings.

ANNEX 23 was initiated with the aim of answering the following question “How heat storage technologies can be best integrated into future ultra-low energy buildings?” So, to answer the above question, five subtasks were formulated:
Specific objectives of Annex 23 include:

- Assess the potential of harnessing natural energy sources to supply building heating and cooling through energy storage;
- Assess the use of energy storage to optimize the efficiency of distributed generation;
- Develop and evaluate energy storage conceptual designs suitable for specific applications; and
- Develop guidelines and procedures to estimate the environmental performance of energy storages when applied in ultra-low energy buildings and communities.
Contracting Parties or Sponsors participating and representing institutes:

<table>
<thead>
<tr>
<th>Country</th>
<th>Research Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Concordia University</td>
</tr>
<tr>
<td></td>
<td>Public Works Government Services Canada</td>
</tr>
<tr>
<td></td>
<td>Laboratoire des Technologies de l'énergie d'Hydro-Québec</td>
</tr>
<tr>
<td>China</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>Denmark</td>
<td>Technical University of Denmark</td>
</tr>
<tr>
<td>France</td>
<td>CETHIL, INSA de LYON</td>
</tr>
<tr>
<td></td>
<td>La Rochelle University</td>
</tr>
<tr>
<td></td>
<td>École Nationale des Travaux Publics de l'État</td>
</tr>
<tr>
<td></td>
<td>University of Savoie</td>
</tr>
<tr>
<td>India</td>
<td>Anna University</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian University of Science and Technology (NTNU)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>University of Auckland</td>
</tr>
<tr>
<td>Spain</td>
<td>University of Lleida</td>
</tr>
<tr>
<td></td>
<td>University of Zaragoza</td>
</tr>
<tr>
<td>Sweden</td>
<td>Chalmers University of Technology</td>
</tr>
<tr>
<td></td>
<td>Dalarna University</td>
</tr>
<tr>
<td>Turkey</td>
<td>Dokuz Eylül University</td>
</tr>
<tr>
<td>UK</td>
<td>University of Ulster</td>
</tr>
</tbody>
</table>

Activities / achievements:

Subtask A carried out a survey which included seventeen projects: six from Canada, four from France, three from China, three from Sweden and one from Spain. These projects covered a wide spectrum of applications and were based on various storage materials.

The review performed within subtask B reported only a qualitative analysis could be made because case studies differ widely or data are not sufficiently detailed. Concerning thermal energy storage materials, both sensible and latent storage materials are reported in the projects of subtask A. For sensible materials, it is water, brick and concrete which are well described in the review of subtask B. It is the same for latent storage materials (PCMs and ice) except for snow. In addition, subtask A projects contain both passive and active thermal storage systems. The passive systems are PCMs embedded in structure buildings for cooling whereas active systems cover a wide range of technologies and applications. Thus, storage tanks (water, ice and snow) are the most used while ventilated concrete slabs and borehole storage in rock are used both for heating and cooling. Four projects use solar energy as renewable energy. The storage temperature of the projects ranges from low to high, 0°C to 900°C. Lastly, only three projects are long term (seasonal) storage systems. Except for the snow stored in a shallow pond, all these systems are described in detail within the review of subtask B. Indeed, subtask A projects cover a wide range of applications but neither of them is a thermo-chemical or electrical energy storage system.
In conclusion, a general agreement was observed between the survey of the real applications (subtask A) and the literature review (subtask B). It was also concluded that it is very difficult to extract general design rules or even simple practical results from the scientific literature. This problem arises from the fact that there is almost no inter-comparison between various designs. In most studies, the optimization of a single particular configuration is studied. Even for models, each group tends to use its own in-house solution without systematic comparisons with others. In addition, performances of energy storage systems are strongly related to local climatic conditions, which add to the difficulty of the reutilization of previously published results in subsequent research as a comparison basis.

Subtask C dealt with the modeling of new sustainable TES (Thermal Energy Storage) or improvement of promising existing systems that have potentials to be successfully integrated with a variety of ultra-low energy buildings. Therefore several kinds of TES models have been analyzed even if this subtask is mainly focused on PCM. The subtask carried out intermodal comparison of the existing models. A number of numerical benchmarking were developed and proposed to participants. Figure 1 represents the surface temperature evolution for a wall integrating a PCM.

![Figure 1: Evolution of the internal temperatures. Case 8](image)

A number of simulation models were developed to simulate the performance of building with integrated PCM within building envelope, with the mechanical ventilation system (air handling unit), and with the domestic hot water tank. The developed simulation tools were validated with the experimental data which were collected within Task D and from literature.

Figure 2 shows the prediction of a validated 3-D transient numerical model of a centralized latent heat thermal energy storage (LHTES) system filled with paraffin RT20. The centralized LHTES system is integrated into a mechanical ventilation system of a building. The thermal performance of LHTES system is assessed using hourly inlet air data obtained from the national climate data and information archive, Canada for summer months. The dashed area represents the amount of cooling load that was removed using the control strategy by switching to the LHTES system. This results in a reduction of 63% in the total required cooling load for June 1st.
In Task D of Annex 23 one of the main goals was to simplify the selection and design process. This issue is addressed by investigating different technologies under development, its potential benefits and the current status. This will allow architects and engineers to select the correct technology for a specific problem based on the expected benefits that have been determined by detailed measurements and analysis in experimental set-ups. This study also offers detailed information of each analysed system in order to provide the designers an insight to the previous experiences.

The activities in the Task E are limited to thermal storage in building elements and components, and mainly PCM. PCM based components can be used in different parts of the building envelope such as internal/external walls, floor and ceiling, thus the orientation of the component has also influence on thermal behavior of the building. It was reported that PCM must be well encapsulated before it can be used in any application, especially when is used in building envelope. The available microencapsulated/ macro encapsulated products vary in quality with regards to leakage. PCM application in building requires perfect encapsulation to avoid leakage through evaporation/ sublimation, which will have two following negative impacts;

(1) Environmental issues since the leaked vapour will go to the interior of the building,

(2) Evaporation leads to change in the melting range. The PCM melts at higher temperatures compared to the original one and hence a PCM, which work well, may not work well later. For examples paraffin waxes may lose the more volatile component while ester does not lose weight at all but rather gain weight due to moisture absorption.

However, PCM should never be used in all rooms or locations in the building, otherwise the payback period will be more than 15 years. Its use must be optimised very carefully in order to reduce the payback period to 5 years.
Finally, the designers need guidelines and simplified design tools for calculation of the energy saving, payoff time and life cycle assessment. As long as the standards, guidelines and calculation tools are not available, it will be very difficult to introduce latent heat based building products to the construction market.

SOME SELECTED REFERENCES:

Overview of scope

The general objective of this Annex is to identify and demonstrate cost-effective strategies for waste heat management using advanced TES. New knowledge will be generated with regards to:

- The potential for advanced TES to minimize process waste heat through better process integration, enabling the use of waste heat for internal heating demands or cooling demands (via heat driven cooling).
- The potential for advanced TES to cost-effectively increase waste heat driven power generation in industrial applications.
- The potential for advanced TES to enable external use of heat from industrial-scale processes through effective thermal energy distribution.
- The potential for advanced TES to increase the utilization of waste heat in vehicles like on-board cooling and minimization of cold-start.
- The potential for advanced TES to increase the use of waste cooling (e.g., the large cooling potential associated with LNG regasification) and free cooling for comfort cooling applications.

Thus, a sub-goal of this proposed annex is to really dig into the waste heat utilization issue from a very broad perspective and show the great potential for using advanced TES towards reaching a resource efficient energy system where waste heat (and cold) is minimized. This has a good potential for attracting a large number of participants from a variety of disciplines and levels of R&D (basic research to commercial systems).
Participating countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Contact name</th>
<th>Contact e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Tongji University</td>
<td>Prof. Dong Zhang</td>
<td>zhangdng@tongji.edu.cn</td>
</tr>
<tr>
<td></td>
<td>PROMES UPVD</td>
<td>Prof. Dr. Xavier Py</td>
<td>py@univ-perp.fr</td>
</tr>
<tr>
<td></td>
<td>EDF R&D</td>
<td>Dr. Ali Bourig</td>
<td>ali.bourig@edf.fr</td>
</tr>
<tr>
<td>Germany</td>
<td>ZAE Bayern</td>
<td>Christoph Rathgeber</td>
<td>rathgeber@muc.zae-bayern.de</td>
</tr>
<tr>
<td></td>
<td>DLR</td>
<td>Dr. Doerte Laing</td>
<td>doerte.laing@dlr.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Thomas Bauer</td>
<td>thomas.bauer@dlr.de</td>
</tr>
<tr>
<td>Japan</td>
<td>Osaka University</td>
<td>Prof. Kazunobu Sagara</td>
<td>sagara@arch.eng.osaka-u.ac.jp</td>
</tr>
<tr>
<td></td>
<td>Tokyo Institute of Technology</td>
<td>Dr. Yukitaka Kato</td>
<td>yukitaka@nr.titech.ac.jp</td>
</tr>
<tr>
<td>Spain</td>
<td>University of Lleida</td>
<td>Prof. Dr. Luisa F. Cabeza</td>
<td>lcabeza@diei.udl.cat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Ingrid Martorell</td>
<td>imartore@diei.udl.cat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Eduard Orò</td>
<td>eduoro@diei.udl.cat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Antoni Gil</td>
<td>tgil@diei.udl.cat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laia Miró</td>
<td>lmiro@diei.udl.cat</td>
</tr>
<tr>
<td></td>
<td>University of Barcelona</td>
<td>Dr. A. Inés Fernández</td>
<td>ana_inesfernandez@ub.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Mónica Martinez</td>
<td>monicamartinez@ub.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Camila Barreneche</td>
<td>camilabarreneche@ub.edu</td>
</tr>
<tr>
<td></td>
<td>University of Zaragoza</td>
<td>Dr. Pablo Dolado</td>
<td>dolado@unizar.es</td>
</tr>
<tr>
<td>Sweden</td>
<td>KTH</td>
<td>Dr. Viktoria Martin</td>
<td>viktoria.martin@energy.kth.se</td>
</tr>
<tr>
<td>Turkey</td>
<td>Çukurova University</td>
<td>Prof. Dr. Halime Paksoy</td>
<td>hopaksoy@cu.edu.tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Hunay Evliya</td>
<td>hevliya@cu.edu.tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selma Yilmaz</td>
<td>curisel@yahoo.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beyza Beyhan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kemal Cellat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nurten Shan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egin Kucukaltun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gaziosmanpasa University</td>
<td>Prof. Dr. Ahmet Sari</td>
<td>Ahmet.sari@gob.edu.tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Cemil Alkan</td>
<td>Cemil.alkan@gob.edu.tr</td>
</tr>
<tr>
<td></td>
<td>Nigde University</td>
<td>Dr. Yeliz Konuklu</td>
<td>ykonukly@nigde.edu.tr</td>
</tr>
<tr>
<td>USA</td>
<td>Lehigh University</td>
<td>Prof. Dr. Sudhakar Neti</td>
<td>sneti@lehigh.edu</td>
</tr>
</tbody>
</table>

Observers

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Contact name</th>
<th>Contact e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>The University of Auckland</td>
<td>Prof. Dr. Mohammed M. Farid</td>
<td>m.farid@auckland.ac.nz</td>
</tr>
<tr>
<td>Chile</td>
<td>Universidad Adolfo Ibáñez</td>
<td>Dr. Gustavo Cáceres</td>
<td>Gustavo.caceres@uia.cl</td>
</tr>
</tbody>
</table>
Activities / achievements

Workshops:

6th Experts meeting and workshop

5-8 March 2013
Munich, Germany
8 participants from 5 countries

7th Experts meeting and workshop

7-8 October 2013
Adana, Turkey
20 participants from 4 countries
1 observer
Parallel workshop with Annex 23

Findings:

- Discussion on how to estimate the waste heat potential in countries started, and a methodology was agreed.
- The round robin test was commented and it was decided to also include in the final report a description of the apparatus available in the different labs for materials testing. The round robin test will continue after the Annex is finished.
- The importance of the energy mix and CO₂ factor were evaluated, and it was decided to include these topics in the final report.
- Waste heat potential accounting has been carried out by the ZAE Bayern and the University of Lleida and will be published and included in the final report.
- CO₂ assessment is divided between into embedded CO₂ in the storage materials and the operational CO₂ reduction achieved by TES technologies. This will be reflected in the final report.
- The energy mix and CO₂ factor have been assessed and will be included in the final report.
- There is interest to publish a common paper with the CO₂ findings of the Annex. Luisa F. Cabeza is in charge to follow this objective.
- There is a clear interest of the participants to start a new Annex in January 2014.
Publications in scientific journals:

- Laing, D., Bauer, T., Breidenbach, N., Hachmann, B., Johnson, M.
 Development of high temperature phase-change-material storages

- Stritih, U., Osterman, E., Evliya, H., Butala, V., Paksoy, H.
 Exploiting solar energy potential through thermal energy storage in Slovenia and Turkey
 Renewable and Sustainable Energy Reviews 25, pp. 442-461, 2013

- Barreneche, C., Navarro, M.E., Fernández, A.I., Cabeza, L.F.
 Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale

- Zsembinszki, G., Solé, C., Castell, A., Pérez, G., Cabeza, L.F.
 The use of phase change materials in fish farms: A general analysis

- Oró, E., Miró, L., Barreneche, C., Martorell, I., Farid, M.M., Cabeza, L.F.
 Corrosion of metal and polymer containers for use in PCM cold storage

- Lazaro, A., Peñalosa, C., Solé, A., Diarce, G., Haussmann, T., Fois, M., Zalba, B., (...), Cabeza, L.F.
 Intercomparative tests on phase change materials characterisation with differential scanning calorimeter

- Giro-Paloma, J., Oncins, G., Barreneche, C., Martinez, M., Fernández, A.I., Cabeza, L.F.
 Physico-chemical and mechanical properties of microencapsulated phase change material

 Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials
• Rincón, L., Castell, A., Pérez, G., Solé, C., Boer, D., Cabeza, L.F.
 Evaluation of the environmental impact of experimental buildings with different constructive
 systems using Material Flow Analysis and Life Cycle Assessment

• Oró, E., Castell, A., Chiu, J., Martin, V., Cabeza, L.F.
 Stratification analysis in packed bed thermal energy storage systems

• Álvarez, S., Cabeza, L.F., Ruiz-Pardo, A., Castell, A., Tenorio, J.A.
 Building integration of PCM for natural cooling of buildings

• Cabeza, L.F., Martin, V., Yan, J.
 Advances in energy storage research and development: The 12th International Conference on
 Energy Storage Innostock 2012

• Gil, A., Oró, E., Peiró, G., Álvarez, S., Cabeza, L.F.
 Material selection and testing for thermal energy storage in solar cooling

• Oró, E., Barreneche, C., Farid, M.M., Cabeza, L.F.
 Experimental study on the selection of phase change materials for low temperature applications

• Barreneche, C., Gil, A., Sheth, F., Inés Fernández, A., Cabeza, L.F.
 Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM
 Solar Energy 94, pp. 344-351, 2013

• Nuytten, T., Moreno, P., Vanhoudt, D., Jespers, L., Solé, A., Cabeza, L.F.
 Comparative analysis of latent thermal energy storage tanks for micro-CHP systems

• Solé, A., Miró, L., Barreneche, C., Martorell, I., Cabeza, L.F.
 Review of the T-history method to determine thermophysical properties of phase change materials
 (PCM)
 Mathematical modeling of a PCM storage tank in a solar cooling plant
 Solar Energy 93, pp. 1-10, 2013

- Serrano, S., Barreneche, C., Rincón, L., Boer, D., Cabeza, L.F.
 Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA
 Construction and Building Materials 47, pp. 872-878, 2013

- Cabeza, L.F., Barreneche, C., Miró, L., Martínez, M., Fernández, A.I., Urge-Vorsatz, D.
 Affordable construction towards sustainable buildings: Review on embodied energy in building materials
 Current Opinion in Environmental Sustainability 5 (2), pp. 229-236, 2013

- Oró, E., Cabeza, L.F., Farid, M.M.
 Experimental and numerical analysis of a chilly bin incorporating phase change material

- Cabeza, L.F., Barreneche, C., Miró, L., Morera, J.M., Bartoli, E., Inés Fernández, A.
 Low carbon and low embodied energy materials in buildings: A review
 Renewable and Sustainable Energy Reviews 23, pp. 536-542, 2013

- Gil, A., Oró, E., Castell, A., Cabeza, L.F.
 Experimental analysis of the effectiveness of a high temperature thermal storage tank for solar cooling applications

 Development and characterization of new shape-stabilized phase change material (PCM) - Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings

- De Gracia, A., Castell, A., Navarro, L., Oró, E., Cabeza, L.F.
 Numerical modelling of ventilated facades: A review
 Renewable and Sustainable Energy Reviews 22, pp. 539-549, 2013
• Menoufi, K., Castell, A., Farid, M.M., Boer, D., Cabeza, L.F.
Life Cycle Assessment of experimental cubicles including PCM manufactured from natural resources (esters): A theoretical study

• Barreneche, C., Solé, A., Miró, L., Martorell, I., Fernández, A.I., Cabeza, L.F.
Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM)
Thermochimica Acta 553, pp. 23-26, 2013

• Vadiee, A., Martin, V.
Thermal energy storage strategies for effective closed greenhouse design

• Chiu, J.N.W., Gravoille, P., Martin, V.
Active free cooling optimization with thermal energy storage in Stockholm

• De Gracia, A., David, D., Castell, A., Cabeza, L.F., Virgone, J.
A correlation of the convective heat transfer coefficient between an air flow and a phase change material plate

• Oró, E., Chiu, J., Martin, V., Cabeza, L.F.
Comparative study of different numerical models of packed bed thermal energy storage systems

• Oró, E., De Gracia, A., Cabeza, L.F.
Active phase change material package for thermal protection of ice cream containers

• Castell, A., Menoufi, K., de Gracia, A., Rincón, L., Boer, D., Cabeza, L.F.
Life Cycle Assessment of alveolar brick construction system incorporating phase change materials (PCMs)

• De Gracia, A., Navarro, L., Castell, A., Ruiz-Pardo, A., Alvarez, S., Cabeza, L.F.
Thermal analysis of a ventilated facade with PCM for cooling applications
- Zhao, W., Elmozughí, A.F., Oztekin, A., Neti, S.
 Heat transfer analysis of encapsulated phase change material for thermal energy storage

- Zhao, W., Zheng, Y., Sabol, J.C., Tuzla, K., Neti, S., Oztekin, A., Chen, J.C.
 High temperature calorimetry and use of magnesium chloride for thermal energy storage
 Renewable Energy 50, pp. 988-993, 2013

- Coscia, K., Elliott, T., Mohapatra, S., Oztekin, A., Neti, S.
 Binary and ternary nitrate solar heat transfer fluids

- Zhao, W., Neti, S., Oztekin, A.
 Heat transfer analysis of encapsulated phase change materials

- Zheng, Y., Zhao, W., Sabol, J.C., Tuzla, K., Neti, S., Oztekin, A., Chen, J.C.
 Encapsulated phase change materials for energy storage - Characterization by calorimetry

- Blaney, J.J., Neti, S., Misiolek, W.Z., Oztekin, A.
 Containment capsule stresses for encapsulated phase change materials

- Calvet, N., Py, X., Olivès, R., Bédécarrats, J.-P., Dumas, J.-P., Jay, F.
 Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity
 Energy 55, pp. 956-964, 2013

- Jeanjean, A., Olives, R., Py, X.
 Selection criteria of thermal mass materials for low-energy building construction applied to conventional and alternative materials
 Energy and Buildings 63, pp. 36-48, 2013

- Calvet, N., Gomez, J.C., Faik, A., Roddatis, V.V., Meffre, A., Glatzmaier, G.C., Doppiu, S., Py, X.
 Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system
• Vadiee, A., Martin, V.
 Energy analysis and thermoeconomic assessment of the closed greenhouse - The largest commercial solar building
 Applied Energy 102, pp. 1256-1266, 2013

• Seon Tae KIM, Junichi RYU, Yukitaka KATO
 The optimized mixing ratio of expanded graphite mixture for packed bed reactor of chemical heat pump

• Ishitobi, J. Ryu, Y. Kato
 Evaluation of Heat Output Capacities of Lithium Chloride-modified Magnesium Hydroxide at Various Mixing Ratios, Temperatures, and Vapor Pressures for Thermochemical Energy Storages

• Beyhan, B., Paksoy, H., Daşgan, Y.
 Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications
 Energy Conversion and Management 74, pp. 446-453, 2013

• Gil, A., Barreneche, C., Moreno, P., Solé, C., Inés Fernández, A., Cabeza, L.F.
 Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale

• Solé, A., Fontanet, X., Barreneche, C., Fernández, A.I., Martorell, I., Cabeza, L.F.
 Requirements to consider when choosing a thermochemical material for solar energy storage

• De Gracia, A., Navarro, L., Castell, A., Cabeza, L.F.
 Numerical study on the thermal performance of a ventilated facade with PCM

• Zhang, H.L., Baeyens, J., Degrève, J., Cacères, G.
 Concentrated solar power plants: Review and design methodology
 Renewable and Sustainable Energy Reviews 22, pp. 466-481, 2013

• Brems, A., Cáceres, G., Dewil, R., Baeyens, J., Pitié, F.
 Heat transfer to the riser-wall of a circulating fluidised bed (CFB)
- Sari, A., Karli, A., Alkan, C., Karaipekli, A.
 Polyethyl methacrylate (PEMA)/fatty acids blends as novel phase change materials for thermal energy storage

- Sari, A., Karaipekli, A., Eroğlu, R., Biçer, A.
 Erythritol tetra myristate and erythritol tetra laurate as novel phase change materials for low temperature thermal energy storage

- Biçer, A., Sari, A.
 New kinds of energy-storing building composite PCMs for thermal energy storage
 Energy Conversion and Management 69, pp. 148-156, 2013

- Bauer, T., Pfleger, N., Breidenbach, N., Eck, M., Laing, D., Kaesche, S.
 Material aspects of Solar Salt for sensible heat storage

- Chiu, J.N.W., Martin, V.
 Multistage latent heat cold thermal energy storage design analysis

Researchers exchange

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Origin institution</th>
<th>Host institution</th>
<th>Topic</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laia Miró</td>
<td>University of Lleida, Spain</td>
<td>ZAE Bayern, Germany</td>
<td>T-history high temperature analysis of PCMs</td>
<td>June-Sept 2013</td>
</tr>
</tbody>
</table>
Overview of Scope

The future of electricity network involves a massive penetration of unpredictable renewable energies. For insuring network stability as well as for maximizing the energy efficiency of such networks, storage is a key issue. Up to now, the integration of renewable energies did not take into account the demand side and was performed in a “fit and forget” way. The optimum evolution in an economic perspective is in the future to have an integration that is respecting the needs. One solution – beneath demand side management and grid extension – is the use of energy storages. The main purpose of adding energy storage systems in the electricity grid is to collect and store overproduced, unused energy and be able to reuse it during times when it is actually needed. Essentially the system will balance the disparity between energy supply and energy demand. Worldwide between 2% and 7% of the installed power plants are backed up by energy storage systems (99% pumped hydro systems). The future demand of energy storage devices is actually unknown. Only the main influence factors on this demand are known.
Survey about different storage technologies (>100 kW) realized in the world

Survey about power plant fleet in some European countries and the development
The main objective of this task is to develop a method or approach to calculate the regional energy balancing demand and to derive regional storage demand rasterizing the area and taking into account that there are competitive technical solutions.

Additionally there are two important aspects. On the one hand an overview about the different technical and economical and legal framework requirements in the different countries.

Case Studies: Running projects, planned projects and future projects of stationary energy storage systems.

And on the other hand typical operation modes for energy storages and derived from this typical charge/discharge curves, needed for future standardizations.
To reach these objectives, the annex is structured in four main work packages

<table>
<thead>
<tr>
<th>I.</th>
<th>Technical and economic framework conditions for electric energy storage systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>The aim is to give an assessment and a comparison about general technical and economic conditions in the different countries. Therefore a survey about realized storage systems, national technical key figures with their future development and economic framework conditions have to be examined.</td>
<td></td>
</tr>
<tr>
<td>1.1 Survey about type, number, power, capacity and efficiency of energy storage systems</td>
<td></td>
</tr>
<tr>
<td>1.2 Different alternative technologies for grid balancing</td>
<td></td>
</tr>
<tr>
<td>1.3 Survey about technical key figures of different countries (power plant fleet, grid structure, future scenarios and forecasts)</td>
<td></td>
</tr>
<tr>
<td>1.4 Survey about estimations about the future energy storage demand</td>
<td></td>
</tr>
<tr>
<td>1.5 Survey about economic framework for energy storage systems (e.g. special tariffs or laws)</td>
<td></td>
</tr>
<tr>
<td>1.6 Assessment and comparison of technical and economical general conditions</td>
<td></td>
</tr>
<tr>
<td>Leader work package 1: Dr. Bert Droste-Franke, European Academy, Germany</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.</th>
<th>Calculation method to determine spatial demand for electric energy storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In this core work package a new, spatial mathematical method has to be developed and applied to derive the grid balancing demand and the energy storage demand as a part of it.</td>
<td></td>
</tr>
<tr>
<td>2.1 Survey of different methods to estimate the demand for grid balancing</td>
<td></td>
</tr>
<tr>
<td>2.2 Development of a detailed method to estimate regional demand for grid balancing</td>
<td></td>
</tr>
<tr>
<td>2.3 Development of a simplified method to estimate regional demand for energy balancing</td>
<td></td>
</tr>
<tr>
<td>Leader work package 2: Dr. Yvonne Scholz, DLR, Germany</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III.</th>
<th>Applications of electric energy storage systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>In this work package general and realized / planned applications of electric energy storage will be described and examined to derive probable business cases. Last but not least other grid balancing options, which are competing solutions, are taken into account.</td>
<td></td>
</tr>
<tr>
<td>3.1 Survey about different general applications of energy storages</td>
<td></td>
</tr>
<tr>
<td>3.2 Special realized applications</td>
<td></td>
</tr>
<tr>
<td>3.3 Competing solutions</td>
<td></td>
</tr>
<tr>
<td>Leader work package 3 (interim): Dr. Grietus Mulder, VITO, Belgium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV.</th>
<th>Requirements for test procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>The aim of this work package is to develop guidelines – derived from applications – for testing energy storage systems.</td>
<td></td>
</tr>
<tr>
<td>4.1 Overview about considered storage technologies for test procedures</td>
<td></td>
</tr>
<tr>
<td>4.2 Definition of operation modes of typical energy storage applications</td>
<td></td>
</tr>
<tr>
<td>4.3 Deriving typical charging / discharging cycles</td>
<td></td>
</tr>
<tr>
<td>4.4 Guidelines for testing energy storage systems</td>
<td></td>
</tr>
<tr>
<td>Leader work package 4: Dr. Marion Perrin, INES-CEA - France</td>
<td></td>
</tr>
</tbody>
</table>
Research participants

<table>
<thead>
<tr>
<th>Company / Country</th>
<th>Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraunhofer UMSICHT / DE</td>
<td>Christian Doetsch</td>
</tr>
<tr>
<td></td>
<td>Patrick Wrobel</td>
</tr>
<tr>
<td></td>
<td>Annedore Kanngießer</td>
</tr>
<tr>
<td>Fraunhofer IOSB-AST / DE</td>
<td>Peter Bretschneider</td>
</tr>
<tr>
<td></td>
<td>Steffen Nicolai</td>
</tr>
<tr>
<td></td>
<td>Daniel Beyer</td>
</tr>
<tr>
<td>DLR / DE /</td>
<td>Yvonne Scholz</td>
</tr>
<tr>
<td></td>
<td>Hans-Christian Gils</td>
</tr>
<tr>
<td></td>
<td>Felix Cebulla</td>
</tr>
<tr>
<td>INES-CEA / FR</td>
<td>Marion Perrin</td>
</tr>
<tr>
<td></td>
<td>Elisabeth Lemaire</td>
</tr>
<tr>
<td>Europaeische Akademie / DE</td>
<td>Bert Droste-Franke</td>
</tr>
<tr>
<td>VITO / BE</td>
<td>Grietus Mulder</td>
</tr>
<tr>
<td>RWTH ISEA / DE</td>
<td>Matthias Leuthold</td>
</tr>
<tr>
<td></td>
<td>Christian Bußar</td>
</tr>
<tr>
<td>FFE /DE</td>
<td>Christoph Pellinger</td>
</tr>
<tr>
<td></td>
<td>Tobias Schmid</td>
</tr>
<tr>
<td>VTT / FI</td>
<td>Raili Alanen</td>
</tr>
<tr>
<td>EON / DE</td>
<td>Christian Folke</td>
</tr>
<tr>
<td></td>
<td>Gerbert van der Weijde</td>
</tr>
</tbody>
</table>
Meetings and workshops

- Kick-off Meeting, Germany, Oberhausen, 2010-Apr-08
- 2nd Meeting, Spain, Barcelona, 2010-Oct-25
- 4th Meeting Spain, Lleida, 2012-May-14/15
- 5th Meeting Belgium, Mol, 2012-November-07
- 6th Meeting Germany, Stuttgart, 2013-July-09
- 7th Meeting Germany, Berlin, 2013-Nov-20
- Final meeting: 8th Meeting, France, Paris, 2014-March-18

Impression of the 7th Meeting in Germany, Berlin.

Publications

Marcus Budt, Druckluftenergiespeicher – Eine Speicheroption nur im großen Maßstab?, 4th MCC-Fachforum EnergieSpeicher2013, Cologne, Germany, 2013 Nov. 13th

Christian Doetsch, Thermische Speicher im Energiesystem der Zukunft, Berliner Energietage 2013, Berlin, Germany, 2013 May 16th

Christian Doetsch, Future Electric Energy, Storage/Balancing Demand, Guest Lecture at the University of British Columbia, CERC- Clean Energy Research Center, Vancouver, Canada, 2013 Okt. 13th

Christian Doetsch, Patrick Wrobel, »Future Electric Energy Storage Demand« - Results from the IEA eces26 project, 8th International Renewable Energy Storage Conference and Exhibition, November 2013, Berlin, Germany

Wrobel, P., “Analysis of local energy balancing demand in Germany – Presentation of the methodology “, oral presentation, 12th Symposium Energy Innovation, Graz, 2012

Dr. Andreas Hauer,
Bavarian Center for Applied Energy Research, ZAE Bayern
hauer@muc.zae-bayern.de

Start: January 2013
End: December 2015

At the Executive Committee Meeting in Auckland, New Zealand, November 2012, this Annex was approved. The objective of this joint Task with the IEA Solar Heating & Cooling Implementing Agreement is to continue the activities started in Annex 24 “Compact Thermal Energy Storage: Material Development for System Integration”.

From the experience of the experts in the first period of the Task, it was concluded that one strong point elaborated is the interaction between the materials experts and the application experts, and the facilitation of this interaction by the division of the work into two subtasks: materials and applications.

The experiences of Annex 24 lead to the following new structure of the new Annex, depicted in Figure 1:
The matrix-like structure is maintained, with three materials working groups (in blue), one subtask for applications (in green) and one working group on economical evaluation (in red).

The economical evaluation will be performed by a bottom-up approach (while in Annex 24 a top-down approach was used). A questionnaire was send out to predict the expected cost of each storage system, including material and other components.
The working group on applications and system integration starts to work on the identification of operation conditions for relevant applications. The applications properties (energy source, storage, demand) were listed. The storage requirements were described (high capacity or high power demand, short or long term storage).

Within the material working groups new material developments were highlighted. As an example figure 2 shows the coating of Metal-Organic-Frameworks (MOFs) on heat exchanger surfaces by the Fraunhofer Institute on Solar Energy, ISE, Freiburg, Germany.

![Figure 2: Optical image of the obtained coated sheets](image)

As the working group on Test and Characterization continued its standardization efforts, the working group on numerical modelling followed its multi-scale simulation activities. The modelling of the reaction kinetics of salt hydrate grains is shown as an example in figure 3. The nucleation and growth of crystals was modeled. The validation with experiments leads to good agreements.

![Figure 3: modelling of the reaction kinetics](image)
The following Countries expressed their interest in participating in this new ECES activity:

<table>
<thead>
<tr>
<th>Contracting Party</th>
<th>Representing Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>ZAE Bayern</td>
</tr>
<tr>
<td>Germany</td>
<td>Fraunhofer ISE</td>
</tr>
<tr>
<td>France</td>
<td>University of Bordeaux</td>
</tr>
<tr>
<td>Japan</td>
<td>Chubu University</td>
</tr>
<tr>
<td>Slovenia</td>
<td>National Institute of Chemistry</td>
</tr>
<tr>
<td>Spain</td>
<td>University of Lleida</td>
</tr>
<tr>
<td>Sweden</td>
<td>Royal Institute of Technology</td>
</tr>
<tr>
<td>Turkey</td>
<td>Cukurova University</td>
</tr>
</tbody>
</table>

The first Experts Meeting was held in Freiburg, Germany, on April 15-17 2013, the second in Ljubljana, Slovenia, on October 2-4.2013.

Publications (selected)

NEW ANNEXES

Annex 27 Quality Management in Design Construction and Operation of Borehole Systems

The quality assurance issues included in the strategic plan of ECES is going to be addressed for borehole thermal energy storage systems in this annex.
Manfred REUSS - ZAE Bayern, Germany - reuss@muc.zae-bayern.de

Annex 28: Distributed Energy Storage for Integration of Renewable Energies

The contribution of renewable energy to overall global energy production is expected to grow worldwide. Most renewable energy sources, like wind, PV, and solar-thermal are fluctuating resources. Significant storage capacity is needed to smooth out these fluctuations for reliable future energy systems. At the moment the focus is on large, central energy storage technologies like pumped hydro or the conversion of surplus electricity into fuels such as hydrogen or methane. The potential for small, distributed energy storage technologies remains mostly unexplored.
The Implementing Agreement “Energy Conservation through Energy Storage” (ECES) approved at the Executive Committee Meeting in 2-3 December 2013 in Ljubljana, Slovenia, the new Annex on the “Integration of Renewable Energies by distributed Energy Storage Systems”. This Annex should focus on the overall storage properties and their impact on the integration of renewable energy rather than the specific challenges of each energy storage technology. Collaboration with other Implementing Agreements (IA) within the IEA Technology Network and other institutions active in the field of distributed energy storage is crucial for this Annex.

The overall goal of Annex 28 is to foster the role of DES and to better evaluate the potential storage capacities for the integration of renewables at an economical competitive level. To reach this goal, distributed energy storage technologies and their properties will be examined, storage properties requirements depending on the different renewable energy sources will be reviewed and possible control and operation strategies for DES and technologies by smart grids will be studied. Finally the potential of DES systems for the integration of renewable energies based on the actual final energy demand shall be quantified and guidelines for choosing the most suitable DES technology for the actual application will be developed. Best practice and success stories examples will be given.

The scope of this Annex includes all energy storage technologies suitable on the consumer side. Three main fields of application – households, trade and commerce and industry – will be investigated. The Figure 2 shows these fields and the typical electric power range.

Figure 4: Definition of “distributed energy storages” by their position within an energy system.
The Annex will cover the Assessment of all storage technologies which show a technical and economic potential for distributed applications, as well as the investigation of system concepts with the temporal mismatch between fluctuating, renewable energy sources (wind, PV, solar-thermal, …) and the corresponding energy demand. Finally an evaluation of national energy scenarios of the participating countries with focus on the development of renewable energies will be performed.

The kick-off workshop and experts meeting will take place in Munich, Germany on April 9-11 2014.

Operating Agents:
Dr. Andreas Hauer,
Bavarian Center for Applied Energy Research, ZAE Bayern
hauer@muc.zae-bayern.de
Dr. Christian Doetsch
Fraunhofer Institute UMSICHT
christian.doetsch@umsicht.fraunhofer.de
Start: January 2014
End: December 2016

The general objective of this Annex is to address the integration, control and automation of energy storage with NZEBs, districts, and/or local utilities. The focus will be on the development of design methods, optimization and control tools related to predicting, operating, and evaluating the performance of NZEBs and districts when energy storage is available. Task definition workshop was organized on December 5, 2013 in Ljubljana, Slovenia.

Operating agent: Fariborz Haghighat, Canada, haghi@bcee.concordia.ca
CONFERENCES

GreenStock 2015
The next tri-annual conference, 13th International Conference on Energy Storage will be organized by China in Beijing. ECES delegates will participate in the International Scientific Committee.

EXECUTIVE COMMITTEE MEETINGS

The Executive Committee had two regular meetings during the year 2013. The 75th XC was in Paris on April 25-26 and the 76th XC was in Ljubljana, Slovenia on December 2-3. The 2014 XC meetings will be as follows.

- Spring 2014: XC77 May 7-9, 2014 Amersfoort, The Netherlands
- Fall 2014: XC78 November 5-7, 2014 Dublin, Ireland

Co-ordination and Co-operation with Other IAs and Institutions

- Taking part in Building Coordination Group (BCG)
- Contributed to the preparation of this IEA Energy Storage Technology Roadmap
- Presented at the IEA EUWP Energy Efficiency in Industry Workshop in Brussels, 20 March 2013
- Presented at IEA Future Buildings Forum Workshop on "Transforming the Built Environment by 2035" in Soesterberg, 11-12 April 2013
- Joint annex with SHC IA: Task 42/Annex 29 Material Research & Development for Improved TES Systems
- Contributing to Storage Group within EC European Renewable Heating and Cooling Technology Platform – RHCTP
- Fraunhofer Institute represented by the Operating Agent of Annex 26 has become a member of EASE
BELGIUM

Delegate

Bert Gysen
Vlaamse Instelling voor Technologisch Onderzoek, VITO
Boeretang 200
B-2400, Mol
BELGIUM
Tel: +32 14 335 914 (5511)
Fax: +32 14 321 185
bert.gysen@vito.be

CANADA

Delegate

Paul Sra
Public Works and Government Services Canada
11 Laurier Street
PDP III – 8A1-17
Gatineau, QC K1A 0S5
CANADA
Tel.: +1 819 956 3972
Fax: +1 819 956 3875
Paul.Sra@tpsc-pwgsc.gc.ca

CHINA

Delegate

Xu Wei
China Academy of Building Research -CABR
30# Beisanhuandonglu ChaoYang District, Beijing
CHINA 100013
Tel: +86-10-8427-0105
Fax: +86-10-8428-3555
xuwei19@126.com

Alt. Delegate

Zhang ShiCong
China Academy of Building Research -CABR
30# Beisanhuandonglu ChaoYang District, Beijing
CHINA 100013
Tel: +8610- 84270181
Fax: +8610-84283555
zsc2062198@yahoo.com.cn
DENMARK

Delegate
Jens Windeleff
Danish Energy Agency
Amaliegade 44, DK-1256 Copenhagen K,
DENMARK
Tel.: + 45 33 92 6818
Fax.: + 45 33 11 47 43
jew@ens.dk

Alt. Delegate
Per Alex Sorenson
PlanEnergi
Jyllandsgade 1 9520 Skorping
DENMARK
Tel: +45 96 82 0402
pas@planenergi.dk

FINLAND

Delegate
Jussi Mäkelä
Energy and Environment National Technology Agency of Finland (TEKES)
Kyllikinportti 2
P.O. Box 69
FIN-00101 Helsinki
FINLAND
Tel: +358 50 3955166
Jussi.Makela@tekes.fi

Alt. Delegate
Raili Alanen
VTT Energy and P&P
Tekniikantie 2, Espoo
P.O.Box 1000
FIN-02044 VTT,
FINLAND
Tel: +358 20 722 5808
Fax: +358 20 722 7026
Raili.Alanen@vtt.fi
FRANCE

Delegate

Elena Paloma del Barrio
Universités Laboratoire TREFLE/CNRS
UMR 8508
Esplanade des Arts et Métiers
F-33405 TALENCE cedex
FRANCE
Tel: +33 5 56 84 54 04
elena.palomo@bordeaux.ensam.fr

Alt. Delegate

Eric Peirano
Département “Energie Renouvellable”
ADEME
500 route des Lucioles
F-06560 Sophia-Antipolis
FRANCE
Tel: +33 4 93 95 79 34
eric.peirano@ademe.fr

GERMANY

Delegate

Hendrik Wust
Project Management Jülich
Division Energy Technologies
Forschungszentrum Jülich GmbH
D-52425 Jülich
GERMANY
Tel: +49 2461 61-3166
Fax: +49 2461 61-3131
h.wust@fz-juelich.de

Alt. Delegate

Rolf Stricker
Project Management Jülich
Division Energy Technologies
Forschungszentrum Jülich GmbH
D-52425 Jülich
GERMANY
Tel: +49 2461 61 1575
Fax. +49 2461 61 3131
r.stricker@fz-juelich.de
ITALY
Delegate
Mario Conte
ENEAA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development
Technical Unit “Advanced Technologies for Energy and Industry” Coordination of Energy Storage Systems
Casaccia Research Centre Via Anguillarese, 301 00123 S. Maria di Galeria (Roma)
Tel: +39.06.3048.4829
Fax: +39.06.3048.6306
mario.conte@enea.it

JAPAN
Delegate
Tadahiko Iramoto
Tokyo Denki University
2-2, Kanda-Nishiki-cho
Chiyodaku Tokyo 101-8457JAPAN
Tel.: +81 3 5280 3429
Fax: +81 3 3429 3264
ibamoto@cck.dendai.ac.jp

Alt. Delegate
Yuriko Terao
Heat Pump and Thermal Storage Technology Center of Japan (HPTCJ)
International Department & Technical Research Department
Hulic Kakigaracho BLDG 6F, 1-28-5 Nihonbashi Kakigaracho
Chuo-ku, Tokyo103-0014 Japan
Tel: +81 3 5643-2416 Fax: +81 3 5641-4501
terao.yuriko@hptcj.or.jp

KOREA
Delegate
Yong Jin Kim
Environment & Energy Systems Division,
KIMM Korea Institute of Machinery & Materials 104 Sinseongno,
Yusung-Gu, Daejeon 305-343,
Republic of Korea
Tel: +82-42-868-7475
Fax: +82-42-868-7284
ykim@kimm.re.kr
NETHERLANDS

Delegate
Lex Bosselaar
NL Energie en Klimaat
Agentschap NL
Croeselaan 15, 3521 BJ Utrecht
Postbus 8242, 3503 RE Utrecht
Tel.: +31 88 602 2495
Lex.Bosselaar@agentschapnl.nl

Alt. Delegate
Teun Bokhoven
DE-Koepel
Schielands Hoge Zeedijk West 18
2841 BZ Moordrecht
The Netherlands
Tel.: +31 182 599899
TeunBokhoven@consolair.nl

NORWAY

Delegate
Rajinder Kumar Bhasin
Norwegian Geotechnical Institute (NGI) Regional Manager Asia
Postal address: P.O. Box 3930 Ullevaal Stadion, NO-0806 Oslo, Norway
Street address: Sognsveien 72, NO-0855 Oslo, Norway
Tel: +47 22 02 30 05
Fax: +47 22 23 04 48
Rajinder.Kumar.Bhasin@ngi.no
SLOVENIA

Delegate

Uros Stritih
University of Ljubljana
Faculty of Mechanical Engineering
Askerčeva 6 1000 Ljubljana
Slovenia
Tel:+ 386 1 4771 312
Fax: +386 1 2518 567
uros.stritih@fs.uni-lj.si

Alt. Delegate

Vincenc Butala
University of Ljubljana
Faculty of Mechanical Engineering
Askerčeva 6 1000 Ljubljana, Slovenia
Tel:+ 386 1 4771 421
Fax: +386 1 2518 567
Vincenc.Butala@fs.uni-lj.si

SWEDEN

Delegate

Jennica Broman
Energy Technology Department<
Swedish Energy Agency
Tel. +46 (0)16 544 21 75
jennica.broman@swedishenergyagency.se

Alt. Delegate

Conny Ryytty
The Energy Technology Department Swedish
Energy Agency
P.O.Box 310,
S-69104 Eskilstuna SWEDEN
Tel.: +46 16 544 2096
Fax: +46 16 544 2261
conny.ryytt@energimyndigheten.se
TURKEY

Delegate

Halime Paksoy
Çukurova University
Faculty of Arts and Sciences Chemistry Department
TR-01330 Adana TURKEY
Tel: +90 322 338 6418
Fax: +90 322 338 6070
hopaksoy@cu.edu.tr

Alt. Delegate

Hunay Evliya
Çukurova University
Centre for Environmental Research
TR-01330 Adana TURKEY
Tel: +90 322 338 6361
Fax: +90 322 338 6361
hevliya@cu.edu.tr

USA

Delegate

Imre Gyuk
U.S Dept.of Energy, 1000 Independence Ave
Washington DC 20585 USA
Tel: +1 202 586 1482
Fax: +1 202 586 5860
Imre.Gyuk@ee.doe.gov

Alt. Delegate

Lynn Stiles
Richard Stockton College NAMS
PO Box 195, Pomona NJ 08240-0195 USA
Tel: +1 609 652 4299
Fax: +1 609 652 4972
lynn.stiles@stockton.edu
UNIVERSITY OF LLEIDA

Delegate Luisa F. Cabeza
University of Lleida Edifici CREA
C/ Pere de Cabrera s/n 25001 Lleida
SPAIN
Tel: +34-973-00 3576
Fax: +34-973-00 3575
lcabeza@diei.udl.cat

Alt. Delegate Albert Castell Casol
University of Lleida Edifici CREA
C/ Pere de Cabrera s/n 25001 Lleida
SPAIN
Tel: +34-973-00 3570
Fax: +34-973-00 3575
acastell@diei.udl.cat

INSTITUTE OF HEAT ENGINEERING

Delegate Roman W. Domanski
Warsaw University of Technology Thermodynamics Division
Polish State Committee for Scientific Research Ul. Nowowiejska 25
PL-00-665 Warsaw
POLAND
Tel: +48 22 825 52 70
Fax: +48 22 825 05 65 or +48 22 825 52 76
rdoma@itc.pw.edu.pl

Alt. Delegate Maciej Jaworski
Warsaw University of Technology Ul. Nowowiejska 25
PL-00-665 Warsaw
POLAND
Tel: + 48 22660 52 09
mjawo@itc.pw.edu.pl

SECRETARY: Hunay Evliya
Cukurova University
Centre for Environmental Research Chemistry Department
TR-01330 Adana
TURKEY
Tel: +90 322 338 6361
Fax: +90 322 338 6361
hevliya@cu.edu.tr